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Identifying sound-scattering organisms is a perennial challenge in fisheries acoustics. Most practitioners classify bac kscat ter based on direct 
sampling, frequency-difference thresholds, and expert judgement, then echo-integrate at a single frequency. Ho w e v er, this approach struggles 
with species mixtures, and discards multi-frequency information when integrating. In v ersion methods do not ha v e these limitations, but are 
not widely used because species identifications are often ambiguous and the algorithms are complicated to implement. We address these 
shortcomings using a probabilistic, B a y esian in v ersion method. Lik e other in v ersion methods, it handles species mixtures, uses all a v ailable 
frequencies, and extends naturally to broadband signals. Unlike previous approaches, it leverages Bayesian priors to rigorously incorporate 
information from direct sampling and biological knowledge, constraining the inversion and reducing ambiguity in species identification. Because 
it is probabilistic, a well-specified model should not produce solutions that are both wrong and confident. The model is based on physical 
scattering processes, so its output is fully interpretable, unlike some machine learning methods. Finally, the approach can be implemented using 
e xisting B a y esian libraries and is easily paralleliz ed f or large datasets. We present examples using simulations and field data from the Gulf of 
Alaska, and discuss possible applications and extensions of the method. 
Keywords: artificial intelligence, big data, broadband, echo integration, EK80, fish, mesopelagic, species identification, wideband. 
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Introduction 

Active acoustics have been used for many decades to measure 
the distribution and abundance of aquatic animals. Acoustic 
techniques have compelling advantages over other methods 
of sampling marine life: they can sample large volumes of wa- 
ter quickly , non-extractively , and with high spatial resolution.
However, because the information contained in an animal’s 
echo is limited, acoustics also have a perennial challenge: iden- 
tification of the sound-scattering organisms. The typical solu- 
tion is to sample them using nets, using the catches to estimate 
species composition and allocate backscatter accordingly, us- 
ing scattering models or empirically established relationships.
If backscatter is dominated by a few scatterer types that are 
well-retained by trawls, this approach works well and is the 
basis for many long-running acoustic-trawl fisheries surveys 
(Simmonds and MacLennan, 2005 ). 

Several current trends present this approach with new chal- 
lenges, as well as new opportunities. One is an increased in- 
terest in “ecosystem-based”surveys, targeting multiple species 
rather than a single dominant one. Another is the use of plat- 
forms besides research vessels, including autonomous under- 
water vehicles (AUVs, Benoit-Bird et al., 2018 ), uncrewed sur- 
face vehicles (USVs, De Robertis et al., 2021 ), vessels of op- 
portunity (Honkalehto et al., 2011 ), and stationary moorings 
and observatories (Urmy et al., 2012 ; De Robertis et al., 2017 ).
These platforms offer expanded spatial coverage and tempo- 
ral persistence compared to crewed vessels, at the cost of re- 
duced or absent direct sampling. At the same time, technolog- 
ical developments such as remote camera systems (Robison,
1999 ; Williams et al., 2010 ; Reisenbichler et al., 2016 ), shad- 
owgraph cameras (Ohman et al., 2019 ), and environmental 
Received: 27 February 2023; Revised: 19 May 2023; Accepted: 22 May 2023 
Published by Oxford University Press on behalf of International Council for the E
employee(s) and is in the public domain in the US. 
NA (eDNA, Berger et al., 2020 ; Shelton et al., 2022 ) can all
rovide information on species composition, but have differ- 
nt biases and have seen only limited integration with acous-
ics. Finally, the advent of commercially available broadband 

BB) echosounders should offer more information from the 
choes themselves, with improved ability to identify scatterers 
emotely (Bassett et al., 2018; Benoit-Bird and Waluk, 2020 ;
otter et al., 2021b ). However, the increased information in
B data comes with corresponding increases in data volume 
nd processing complexity, for which standard analysis pro- 
edures are still developing. Despite ongoing research on these 
ew approaches (and the fact that nets can have their own de-
ectability and selectivity biases, e.g. Williams et al., 2015 ; De
obertis et al., 2023 ) the traditional acoustic-trawl method- 
logy remains the basis of almost every operational fisheries 
coustic survey. 

Even though direct sampling remains indispensable, there 
s also a long history of attempts at remote species identi-
cation using acoustics (Horne, 2000 ). Of these techniques,
he most widely used is classification via the relative fre-
uency response, or “frequency differencing” (Korneliussen 

t al., 2018 ). This involves comparing the ratio of backscatter
cross frequencies. If the scatterers’ frequency-specific target 
trengths (TS) are known, they can be used to define thresh-
lds for frequency-dependent scattering that can be used 

or classification. This approach is simple to implement and 

orks well for scatterers with distinct frequency responses 
e.g. fish and zooplankton), but also has downsides. For one,
hoosing a threshold imposes an arbitrary cutoff, which may
ot be suitable in uncertain cases (though probabilistic exten- 
ions are possible, e.g. De Robertis et al., 2010 ). In addition,
xploration of the Sea 2023. This work is written by (a) US Government 
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requency differencing has to assume that scattering at each lo-
ation is dominated by a single type of animal, and therefore is
ll-suited to mixed aggregations of scatterers. More recently, a
ariety of machine learning and artificial intelligence (ML/AI)
pproaches have been applied to the problem (Roberts et al.,
011 ; Brautaset et al., 2020 ; Sarr et al., 2021 ). The promise
f these techniques is that with big-enough data, advanced al-
orithms will be able to detect subtle patterns that humans
nd simple models cannot. However, supervised ML requires
abour-intensive manual labelling, and the trained model typ-
cally operates as a difficult-to-understand black box, which
ay rely on contextual information from the training dataset,

ather than the actual features of the scatterers. For instance,
eural networks for image recognition learn to expect “sheep”
o appear as white patches on a green field. If the sheep are
oloured orange, they are instead labelled as “flowers,” and
hite rocks may be labelled “sheep.” If the neural network

s shown an image of a sheep in a person’s arms, it calls it a
og; a sheep in water may become a polar bear, etc. (Shane,
018 ). Unsupervised ML approaches do not require manual
raining and can discover new classes of scattering (Woillez
t al., 2012 ), but cannot easily tell the difference between a
ommon mixture and an “unidentified scatterer.” Ultimately,
oth frequency differencing and ML/AI are classification ap-
roaches, using multifrequency information to isolate areas of
nterest on an echogram, which are then integrated at a single
requency. 

Instead of classifying and integrating sequentially, one can
o both simultaneously by solving the “inverse problem”–i.e.
iven some observed backscatter, which animals, at what den-
ities, actually generated it? Inverse approaches in fisheries
nd plankton acoustics have a long history (Holliday et al.,
989 ; Stanton et al., 2012 ; Chu et al., 2016 ) and provide sev-
ral compelling advantages. They can handle mixed scatter-
rs, which are problematic for frequency-response classifiers
nd, unlike ML, they are based on transparent physics-based
cattering processes. Inverse methods extend naturally from
arrowband (NB) to BB data, and in some cases can be used
o infer properties of individual scatterers, such as orientation
nd size (Conti and Demer, 2006 ; Stanton et al., 2012 ; Lor-
nger et al., 2022 ). However, the inverse approach is seldom
sed in practical applications due to several challenges. It is
ore complex to implement than frequency differencing, and
ot available as a tool in most standard acoustic-processing
oftware. More importantly, the inverse problem is often un-
erdetermined, with more unknowns than equations, yielding
mbiguous solutions. Even when solvable in principle, inver-
ions of field data always involve some uncertainty. Besides
ne linearized approximate method (Chu et al., 2016 ), the
ssue of uncertainty has been mostly ignored in the biologi-
al inversion literature. Without a practical approach to con-
train these ill-posed problems and quantify their inherent un-
ertainties, the potential benefits of the inverse approach for
sheries acoustics will remain unrealized. 
We address these challenges by implementing the inverse

cattering problem as a Bayesian statistical model. Bayesian
tatistics have been used in geoacoustic inversion and sound
ropagation applications for decades (Gerstoft and Mecklen-
räuker, 1998 ; Dosso, 2002 ), and are a natural fit for biolog-
cal scattering as well. For this application, two features are
specially worth highlighting. First, Bayesian inference allows
indeed, requires) that a prior distribution be specified for all
arameters. The prior provides a natural place to impose con-
traints on an underdetermined inverse problem, leveraging
iological knowledge, direct samples, or both. The “subjec-
ivity” of the prior is sometimes perceived as a disadvantage
f Bayesian statistics. However, we see it as a clear advan-
age: interpretation of acoustic backscatter always requires
ssumptions and auxiliary information, and expressing them
s priors makes them explicit. In fact, as we illustrate below,
t allows for incorporation of diverse kinds of auxiliary in-
ormation beyond traditional research trawl catches. Second,
nstead of point estimates, a Bayesian model returns posterior
robability distributions for all parameters being inferred. For
n inverse biological scattering problem, these posteriors pro-
ide estimates of animal densities, incorporating all sources
f uncertainty built into the model. Crucially, making the in-
erse scattering problem probabilistic makes it robust enough
o run automatically on large volumes of data. The prior acts
ike a shock absorber for the solution, and the posterior pro-
ides a rigorous precision estimate. If the model is adequately
pecified, it should be honest about the quality of its solution:
n other words, solutions should not be wrong and highly con-
dent at the same time. 
Bayesian inference has a reputation for complexity and

omputational expense, but modern probabilistic program-
ing packages (Patil et al., 2010 ; Gelman et al., 2015 ; Ge

t al., 2018 ) make it simpler to implement, as well as flex-
ble and extensible. It is possible, for instance, to include a
hysical acoustic scattering model inside a Bayesian statisti-
al model, and perform inference on its parameters. By lever-
ging numerical techniques like Hamiltonian Monte Carlo
HMC, Betancourt and Girolami, 2013 ; Hoffman and Gel-
an, 2014 ) and variational inference (VI, Blei et al., 2017 ),
ayesian models can also be run efficiently. In fact, because
ackscatter from a volume of water depends only on the scat-
erers in that volume, inversions can be run in parallel on an
rbitrarily large number of processors (e.g. Regier et al., 2018 ,
019 ). 
We begin this paper with a brief theoretical overview of

he inverse problem for biological backscatter, followed by a
escription of how to solve it using freely available software
ibraries for Bayesian computation, in an implementation we
all “automatic probabilistic echo solving” (APES). We then
how how the method works using two simulated scenarios,
ne simple and one more complex, illustrating the effects of
ncertainty, the number of acoustic frequencies, prior infor-
ation, and ground truth on the model’s solutions. Finally, we

pply the Bayesian inverse approach to NB and BB data col-
ected as part of a 2021 acoustic-trawl survey of Alaska pol-
ock ( Gadus chalcogrammus ) in the Gulf of Alaska to demon-
trate how probabilistic models allow the inverse approach to
e applied at scale in the field. 

ethods 

odel structure 

PES is simply a probabilistic implementation of a model
f linear, non-coherent backscatter from aggregated targets.
hese conditions hold in most acoustic surveys of the wa-

er column, and are the central assumption behind all echo-
ntegration surveys (Foote, 1983 ). If an ensonified volume of
ater V contains N individual scatterers at numerical den-

ity n = N/V , the mean volume backscattering coefficient
MVBC) s v is equal to n times the average backscattering
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cross-section 〈 σ bs 〉 , where the brackets denote a statistical av- 
erage over all scatterers. (Backscattering cross-sections are of- 
ten expressed logarithmically as TS = 10log 10 ( σ bs ), MacLen- 
nan et al., 2002 .) Because this paper only deals with backscat- 
ter, we will drop the subscript “bs” for clarity. This relation- 
ship, s v = 〈 σ 〉 n, allows animal density to be estimated from 

integrated echo energy. 
In general, 〈 σ 〉 for an individual scatterer depends on its 

identity and the acoustic frequency, so for a volume containing 
S types of scatterers ensonified at frequency f , this equation 

can be expanded as 

s v, f = 〈 σ1 , f 〉 n 1 +〈 σ2 , f 〉 n 2 + . . . +〈 σ j, f 〉 n j + . . . +〈 σS, f 〉 n S , 

(1)

where s v, f is the MVBC at frequency f , 〈 σ j, f 〉 is the mean 

backscattering cross-section for scatterer class j at frequency 
f, and n j is the numerical density of the j th scatterer class. Scat- 
terer classes could be different species, different size classes of 
the same species, or abiotic sources of scatter such as bub- 
bles, sediment, or turbulent microstructure (Monahan and 

Lu, 1990 ; Warren et al., 2003 ). For a survey operating at 
F frequencies, (1) can be written more compactly in matrix 

form as 

s v = 

⎡ 

⎢ ⎣ 

〈
σ1 , 1 

〉 · · · 〈
σ1 ,S 

〉
. . . 

. . . 
. . . 〈

σF, 1 , 
〉 · · · 〈

σF,S 
〉
⎤ 

⎥ ⎦ 

n = � n , (2) 

where s v is a length- F vector of frequency-specific MVBCs, n 

is a length- S vector of scatterer densities, and � is an F × S ma- 
trix whose i th , j th element is the backscattering cross-section of 
scatterer class j at frequency i . In other words, each column 

of � corresponds to the backscattering spectrum of a single 
class of scatterer. If we measure s v and know (or assume) �,
solving (2) for n ≥ 0 defines the basic inverse problem. Equa- 
tion 2 is equally applicable to single-, multi-frequency, or BB 

data, though it will not have a unique solution if the number 
of scatterer classes is greater than the number of frequencies,
or if multiple scatterers have collinear backscattering spectra–
i.e. in linear algebra terms, if the scattering matrix � is rank- 
deficient. 

In practice, scattering is influenced by numerous random 

processes and solutions to the inverse problem inevitably con- 
tain uncertainties, even if the equation is fully determined in 

theory. To account for these uncertainties, we embed it into a 
Bayesian probabilistic model. At its simplest, this model takes 
the form 

log 10 (n ) = [ Vector of prior distributions ] 

ω ∼ Nonnegative prior on observation error variance 

μ = 10 log 10 (� n ) 

S v ∼ Normal ( μ, ω) 

where ∼ means “is distributed as,” indicating the quantity on 

the left-hand side is a random variable. Note that we formu- 
late the model in terms of scatterer log-densities and decibel 
volume backscattering strengths S v (MacLennan et al., 2002 ).
This avoids issues with numerical precision (Goldberg, 1991 ),
which are especially problematic for gradient-based optimiz- 
ers and samplers, causing slow or inaccurate model conver- 
gence. Additionally, because individual s v measurements from 

aggregated scatterers are approximately Rayleigh distributed 
Stanton et al., 2018 ) their SD increases proportionally to
catterer density. Expressing the model logarithmically makes 
hese multiplicative errors additive. By the central limit theo- 
em, the assumption of normal observation errors is accept- 
ble if enough individual samples are averaged into each cell.

A key decision when setting up the model is how to define
he scattering matrix �. In the case where each scatterer has a
ell-defined TS spectrum, these simply specify the columns of 

he matrix. If any of these TS spectra are uncertain, we could
ake � a random variable within the model, which will prop-

gate this uncertainty to the posterior estimates for n . One
r more of these spectra could also be modelled as functions
 i ( θi ) of physical parameters (such as body shape, swimblad-
er size, tilt angle, material properties, etc.), denoted here by
 generic parameter vector θ. This scattering model can then
e incorporated as another component to the statistical model 
bove, e.g. 

θi ∼ Prior distribution 

〈 σ i 〉 = g i ( θi ) , i = 1 , 2 , ..., S 

� = [ 〈 σ1 〉〈 σ2 〉 ... 〈 σS 〉 ] , 
here each column vector 〈 σ〉 i is the average backscattering 

ross-section of scatterer class i across all frequencies. This 
ype of model allows us to do inference on the properties of
he scatterers themselves in addition to their densities in the
ater. 
A second key decision is how to set the priors. This is es-

ecially important when Equation 2 is underdetermined. In 

uch situations, which are common, an informed prior may be
he only way to constrain an otherwise unsolvable problem.
rior distributions (including their means, variances, shapes,
nd extreme values) may be specified based on past measure-
ents, literature values, or educated guesses based on contex- 

ual information. They can also be set based on direct samples
r other in-situ data. Which of these methods is most appro-
riate will depend on the particular situation, the data avail-
ble, and the analyst’s judgement. 

odel implementation 

ll models and analyses were implemented in the Julia pro-
ramming language (Bezanson et al., 2012 , 2017 ) using the
uring.jl library for probabilistic programming (Ge et al.,
018 ). Turing provides a concise syntax for defining Bayesian
odels and tools for fitting them to data, including Markov-

hain Monte Carlo (MCMC) samplers and maximum a- 
osteriori (MAP) optimizers. Because it is written in Julia,
uring models can include any Julia code and run efficient

nference on it by exploiting Julia’s native capabilities for 
utomatic differentiation. This is an advantage in acoustics,
ince it allows models to include arbitrarily complex scat- 
ering models (e.g. modal solutions for spheres and bubbles,
istorted-wave Born approximations (DWBAs) including nu- 
erical integration, etc., Stanton and Chu, 2000 ; Jech et al.,
015 ). Additionally, because the models are specified cell-by- 
ell, they can be fit in parallel on as many computer cores
s desired, whether locally or in the cloud. We fit our mod-
ls via MCMC using the highly-efficient no-U-turn sampler 
NUTS, Hoffman and Gelman, 2014 ) with the standard tar-
et acceptance rate of 0.8 and 1 000 samples for adaptation
nd convergence. For each model, we sampled four replicate 
hains and checked them for convergence using the ˆ R statistic,
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Figure 1. Simulation of mixed backscatter from larval fish and krill. (A) Target-strength spectra assumed for fish and krill (fine lines). Points show the 
frequencies at which BB measurements were made (at 1 kHz intervals), and the vertical dotted lines show the five NB frequencies. (B) Simulated 
volume-bac kscat ter spectra, including stochastic noise, for three scenarios: one where bac kscat ter is dominated by krill, one where both krill and fish 
make significant contributions, and one where bac kscat ter is dominated by fish. Lines indicate the theoretical noise-free spectra, with points showing 
the noisy observations simulated for the BB (small symbols) and NB (large symbols) scenarios. 
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hich compares within-chain variance to variance between
hains (Vehtari et al., 2021 ). A package implementing APES
s available at https://github.com/ElOceanografo/Probabilistic 
choInversion.jl , and scripts for all analyses presented here
re available at https://github.com/ElOceanografo/APESExa 
ples . 

imulated case studies 

o test the probabilistic inverse method in a controlled set-
ing where the true values of all quantities are known, we ap-
lied it to backscatter spectra simulated from several assumed
ixtures of biological scatterers. This allowed us to see the

ffects of different mixture compositions, and of adding dif-
erent types of auxiliary information. 

ish and krill 
he first test problems were simulated mixtures of larval fish
nd euphausiids. Discriminating fish from zooplankton is per-
aps the most common use of frequency differencing (Kor-
eliussen et al., 2018 ), but it is not always reliable for mixed-
pecies aggregations (De Robertis et al., 2010 ). In particular,
ackscatter from weakly scattering targets such as zooplank-
on may be mis-classified in the presence of stronger acous-
ic targets. In contrast, a full inverse method should (theoreti-
ally) be able to recover the densities of both animals. In many
egions, mixtures of larval fish and zooplankton are relatively
ommon and may be important ecologically, but are typically
nder-sampled by large-mesh research trawls targeting adult
sh. 
We assumed that the TS of a larval fish would be domi-

ated by scattering from its swimbladder, approximated as
 damped bubble with equivalent spherical radius (ESR)
 = 0.7 mm and damping parameter δ = 0.3, located at 200 m
epth, giving it a resonant frequency of 22 kHz (Love, 1978 ).
rill TS was modelled based on a fluid-like deformed cylin-
er using the DWBA ( McGehee et al., 1998 ; Stanton and
hu, 2000 ). We assumed the same krill shape as McGehee
t al. (1998) , but reduced the body length to 25 mm to better
atch the size of krill encountered during our surveys, scal-

ng down all dimensions proportionally. We also changed its
ound-speed and density contrasts to 1.032 and 1.019, the av-
rage values for krill in Alaska waters (Lucca et al., 2021 ). The
WBA implementation was implemented in the Julia package
DWBA.jl (Urmy, 2016 ). To simulate the stochastic variability
resent in real backscatter, for each observation, we generated
hree random draws at each frequency from a Rayleigh distri-
ution with expected value of � n , then took their average.
his approximates the processes generating volume backscat-

er from a volume containing many animals (Stanton et al.,
018 ), without the complexity of explicitly simulating the
ariability in individual TS due to variability in size, shape,
aterial properties, tilt, etc. This simplification is justified for
ost echo integration applications, where the backscatter val-
es being integrated are averages over large volumes of water
ontaining many scatterers. 

We simulated volume backscattering spectra for three dif-
erent mixtures of fish and krill. In the first scenario, we as-
umed densities of 0.001 fish m 

−3 and 1 000 krill m 

−3 , mak-
ng krill the dominant source of backscatter. The second sce-
ario assumed 0.2 fish and 400 krill m 

−3 , for relatively equal
ackscatter contributions. The third scenario assumed 0.5 fish
 

−3 and 20 krill m 

−3 , making fish the dominant scatterer.
ackscatter from each of these mixtures was simulated at
8, 38, 70, and 120 kHz, the NB frequencies traditionally
sed in fisheries acoustics. It was also observed at 1 kHz in-
ervals across four frequency ranges (15–25, 35–38, 50–87,
00–150, and 170 −240 kHz), representing the analysis bands
chievable with a modern wideband echosounder (Bassett et
l., 2018). The simulated TS and S v spectra are shown in
igure 1 . 
To invert these three scenarios, we set up a model with two

andidate scatterers. The first was krill with a TS spectrum
xed at the modelled mean value ( Figure 1 A). The second scat-
erer was a larval fish represented by a bubble with δ = 0.3,
ut with ESR left as an unknown free parameter (i.e. corre-
ponding to the generic function g in Equation 2 ). We gave the
ubble radius a normal prior centred at 0.5 mm, + / − 0.2 mm,
nd truncated below 0.1 and above 1.5 mm. Fish and krill den-
ities were given log-normal priors with median values of 0.1
nd 200 animals m 

−3 , respectively–i.e. broad but physically
ealistic values. The coefficient of variation for the residual
rror was given an exponential prior with an expected value
.1. The model was thus attempting to infer four unknown
arameters: two animal densities, one animal size, and an er-
or dispersion. We fit the model to the NB and BB data from
ach simulated mixture. Since there were data at four or more
requencies in all cases, this problem was well-posed and solv-

https://github.com/ElOceanografo/ProbabilisticEchoInversion.jl
https://github.com/ElOceanografo/APESExamples
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posterior samples from each of four parallel Markov chains,
using NUTS as described above. 

Mesopelagic mixture 
The second set of test scenarios simulated a more challeng- 
ing problem: a mesopelagic deep-scattering layer (DSL). Such 

layers are found worldwide and contain a potentially enor- 
mous biomass of fish (Irigoien et al., 2014 ) although there 
are considerable uncertainties in those estimates (Proud et al.,
2018 ; Cotter et al., 2021a ). DSLs are typically composed of 
multiple scatterers in addition to fishes, including crustaceans,
cephalopods, and gelatinous animals. Some, like most crus- 
taceans and gelatinous animals, are relatively weak sound- 
scatterers, but others, like squids (Kawabata, 2005 ; Soule 
et al., 2010 ) and physonect (i.e. gas-bearing) siphonophores 
(Barham, 1963 ; Proud et al., 2018 ) can scatter sound strongly 
in a similar manner to swimbladdered fishes. 

Untangling this mixed community with multiple similar TS 
spectra is made more challenging by the fact that no single 
direct-sampling gear captures all of them effectively. Midwa- 
ter trawls retain fishes, squid, and larger crustaceans with size- 
and species-dependent efficiency (Kwong et al., 2018 ), but 
are poor samplers of fragile gelatinous animals. Video cam- 
eras can count gelatinous animals and crustaceans (Robison,
1999 ), but not fishes or squid, which may be repelled (or at- 
tracted) by the vehicles on which the cameras are mounted 

(Stoner et al., 2008 ). Finally, new approaches like environ- 
mental DNA (eDNA) can detect the presence of almost any 
taxon within a water mass, though it is still unclear to what 
extent the number of reads can be interpreted as a measure of 
abundance (but see Shelton et al., 2022 ). 

We simulated a mixture of animals commonly found in 

DSLs in the California Current, where the U.S. National 
Oceanic and Atmospheric Administration (NOAA) and the 
Canadian Department of Fisheries and Oceans conduct a 
biannual acoustic-trawl survey of Pacific hake ( Merluccius 
productus) . Hake are commonly found in mesopelagic scatter- 
ing layers during the daytime, along with other species such 

as squid, myctophids, and sergestid shrimp (Barham, 1957 ,
1963 ; Omori and Gluck, 1979 ). The TS spectrum of hake was 
interpolated between NB values for a generic large swimblad- 
dered fish (De Robertis et al., 2010 ). We modelled myctophids 
and siphonophores as damped bubbles with radii a = 0.65 and 

0.58 mm, and δ = 0.3 and 0.2, respectively. The squid were 
assumed to be 20 cm long, and their TS spectrum was approx- 
imated from that in Jones et al., (2009) . Sergestid shrimp were 
modelled using the McGehee (1998) deformed-cylinder krill 
model, this time scaled up to 4.5 cm body length. We simu- 
lated volume backscatter from a mixture of 0.0025 hake, 0.1 

myctophids, 1.7 shrimp, and 0.07 siphonophores m 

−3 . Note 
that squid were not included in this mixture, i.e. their density 
was zero. Again, we simulated backscatter from the mixture 
at four NB frequencies and their corresponding wideband fre- 
quency ranges as the mean of random Rayleigh variables with 

expected value �n , this time using 10 draws. The TS and S v 
spectra for this simulation are shown in Figure 2 . 

For this problem, we assumed that the TS spectra of the 
five scatterers are fixed and known, unlike in the first prob- 
lem, where one of them was a function of a free parameter.
However, this problem had five scatterers and only four NB 

frequencies, so it was ill-posed, at least as a deterministic in- 
version in the NB case. We demonstrate several ways the solu- 
tion could be constrained with the addition of different types 
f auxiliary information. For each of these scenarios, we ran
he inverse problem using both NB and BB frequencies, draw-
ng 1 000 MCMC samples from each of 4 chains, again using
he standard NUTS sampler. 

In the first scenario, the only constraints were prior distri-
utions on the densities of all five scattering classes. We spec-
fied vague, but physically plausible, log-normal priors for all
catterers–i.e. normal distributions in the log domain, with 

eans set at the common (base-10) logarithm of the true den-
ity and SD of 2 (i.e. two orders of magnitude in the linear
omain). For squid, whose true density was 0, we set the prior
ean at log 10 (0.25), the same as hake. The imposition of even

ague prior distributions is enough to make the problem nu-
erically solvable, though it does not guarantee the solution 

ill be accurate or informative. 
In the second scenario, we assumed information was avail-

ble from a video survey conducted by a remotely oper-
ted vehicle or autonomous underwater vehicle. Video sur- 
eys can reliably quantify slow-moving siphonophores and 

ergestid shrimp, but not faster swimmers like hake, myc- 
ophids, and squid. We assumed that the video survey esti-
ated densities of 0.07 siphonophores m 

−3 and 1.7 sergestids 
 

−3 , with 15% coefficient of variation (c.v.). We used these
stimates to set the siphonophore and sergestid priors in the
og-domain as normal variables centred at log 10 (0.07) and 

og 10 (1.7), with SD s of 0.06. All other priors were as in
cenario 1. 

The third scenario used constraints from a different hy- 
othetical sampling method: environmental DNA analysis 
f water samples. Environmental DNA analyses detect the 
resence or absence of all species for which the appropriate
rimers are available, though it is not clear if they yield reli-
ble estimates of absolute abundance. Here, we assumed the 
DNA analysis revealed evidence for the presence of all scat-
erers except squid. This information then allowed us to set
he prior for squid to approximately zero ( −9.0 + / − 0.01 in
he log domain). Again, all other priors were the same as in
cenario 1. 

The final scenario assumed that both the video survey and
DNA sample were available, constraining the siphonophore,
ergestid, and squid priors. The hake and myctophid priors 
ere the same as in scenario 1. 

pplication to field data 

o demonstrate the utility of APES in real-world applications,
e applied the method to data collected during the Alaska
isheries Science Center’s acoustic-trawl survey of the Gulf of 
laska in boreal summer 2021. This survey was conducted 

board the NOAA Ship Oscar Dyson , a 64 m noise-reduced
sheries research vessel, operating a 5-frequency (18, 38, 70,
20, and 200 kHz) Simrad EK80 scientific echosounder sys-
em (Kongsberg Maritime AS, Horten, Norway). This system 

as operated both in NB and wideband mode with all fre-
uencies operating simultaneously; operating parameters are 
iven in Table 1 . Wideband pulses were linear frequency mod-
lated up-sweeps with the first and last 10% of the signal ta-
ered by a Hann window (“fast ramping” in EK80 settings).
on-linear cross-talk between BB channels is a potential is-

ue for multi-channel BB echosounders transmitting simulta- 
eously (Khodabandeloo et al., 2021 ). While its impact on
olume-scattering (as opposed to TS) measurements is gen- 
rally small ( < 10% even in extreme cases), we minimized the
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Figure 2. Simulation of bac kscat ter from a mixture of mesopelagic organisms. (a) TS spectra of the five candidate scatterers. Thin lines show the 
a v erage TS of each animal as a function of frequency. Points show the frequencies at which BB measurements were made, and the vertical dotted lines 
show the four NB frequencies. (b) Simulated volume bac kscat tering spectrum from the mixed assemblage. The black line shows the theoretical 
noise-free bac kscat ter spectrum, while small blue and large orange symbols sho w the noisy observ ations made at BB and NB frequencies, respectiv ely. 

Table 1 . Set tings and parameters for the EK80 acoustic system. Simulta- 
neous pinging was used in both NB and BB configurations. 

Frequency 
band 
(kHz) 

Beam 

width (deg) 
NB pulse 

length (ms) 

NB 

transmit 
po w er (W) 

BB pulse 
length (ms) 

BB 

transmit 
po w er 
(W) 

18 7 1.024 1000 — —
38 7 0.512 2000 1.024 200 
70 7 0.512 750 1.024 75 
120 7 0.512 250 1.024 50 
200 7 0.512 105 1.024 150 
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otential for this type of interference by restricting transmit
ower to low levels when in BB mode (Khodabandeloo et al.,
021 ). All echosounder frequencies were calibrated using the
tandard-sphere method (Demer et al., 2015 ) in both NB and
ideband mode before and after the survey. During data col-

ection, the ship travelled at a nominal speed of 12 kt (6.2 m
 

−1 ) with the transducers deployed on its drop keel at a depth
f 9.15 m. 
Fitting models to logarithmic data requires care in how low

ackscatter values are handled. Typical practice is to set an
rbitrary threshold (e.g. −70 dB re m 

−1 ) and ignore values
elow it. This causes problems for inverse methods, since low
ackscatter values at one or more frequencies contain valuable
nformation: any class that scatters sound in excess of mea-
urement thresholds at those frequencies cannot be present.
owever, it is also important to exclude data where biologi-

al backscatter is near or below the level of background noise,
ince this will produce erroneous solutions. The general rule
s not to threshold data, but to replace pixels with a low sig-
al to noise ratio (SNR) with missing values. These are easy
o account for in the model: the missing frequency is simply
kipped when computing the log-likelihood, contributing no
nformation to the inference. We quality controlled, prepro-
essed, and spatially averaged the raw NB acoustic data using
choview version 11 (Echoview Software Pty Ltd, Hobart).
ackground noise was estimated and removed (De Robertis
nd Higginbottom, 2007 ), with pixels falling below 10 dB
NR designated as missing data. Noise spikes were manually
emoved, and the automatic bottom detection was checked
nd corrected where necessary. 

Broadband acoustic data were processed to produce cali-
rated volume backscattering data following the approach de-
cribed in Bassett et al., 2017 . Using the power budget equa-
ions in Demer et al. ( 2017 ), volume backscattering spectra
ere calculated for each of the five-frequencies using 1 m win-
ows zero-padded to N = 512 points. Prior to zero-padding
 Tukey window with a 10% cosine fraction was applied
o the average range-compensated data from the individual
chosounder sectors. Further processing steps included the
ourier transform and compensation for the power budget
erms. The band edges were trimmed from the channels such
hat spectral bands 35–43 kHz, 46–86 kHz, 95–157 kHz, and
65–255 kHz were retained for the 38, 70, 120 and 200 kHz
hannels. After trimming, these spectra were combined into
 single vector covering the full bandwidth at each window
ange and for each ping. Individual volume scattering spec-
ra were calculated throughout the water column with 50%
verlap (every 50 cm). Before fitting the inverse models, spec-
ra were averaged into coarser spatial cells 5 m deep and 2
inutes in duration. 
Midwater trawls were deployed regularly along the survey

ransects to confirm the identity of the scatterers and to pro-
ide length-frequency data for TS calculations. We used an
FS 1421 midwater trawl with 76.8 m headrope and footrope;

ts vertical opening was monitored using a Simrad FS70 net-
onde and averaged 16.4 m while fishing. The trawl’s meshes
apered from 650 cm at the headrope to 3.8 cm just forward
f the cod end. The cod end itself was fitted with a knotless
.2 mm nylon liner to increase retention of small organisms.
verage speed during trawling was 1.8 m s −1 (3.4 knots). 

pplication at large scale: Aleutian shelf break 

ur first dataset was taken from a south-north transect near
nimak Island in the eastern Aleutian Chain. This section be-
an at 05:27 local time over the Aleutian Trench and ended on
he continental shelf at 06:20, approximately 18 km north of
ts starting point ( Figure 3 ). We chose it as a demonstration
roblem because it contained several partially overlapping
cattering layers with different frequency responses. These
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Figure 3. Observed volume bac kscat ter (in dB re m 

−1 ) at five NB frequencies (from top to bottom, 18, 38, 70, 120, and 200 kHz) near the shelf break 
south of Unimak Island in the Gulf of Alaska. White pixels indicate areas of low signal-to-noise ratio; these are treated as missing data in the inverse 
models. Se v eral aggregations and scattering la y ers are labelled with numerals: (I) strong, near-bot tom bac kscat ter at all frequencies on the shelf, (II) a 
surf ace la y er, highest at 200 kHz, (III) a la y er near 100 m depth, strongest at 18 kHz, (IV) a slope-associated aggregation visible at all frequencies, and (V) 
a deep scattering la y er strongest at 38 kHz. 
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data were collected in NB mode; after de-noising and quality 
control as described above, volume backscatter was averaged 

into cells 100 m along-track by 5 m depth. 
A trawl targeting a high-backscatter aggregation just in- 

shore of the shelf break confirmed that it was a mixed ag- 
gregation composed of ∼85% pollock and 15% Pacific ocean 

perch ( Sebastes alutus ) (Levine et al., 2022 ). Since these species 
have similar backscattering spectra (De Robertis et al., 2010 ),
e opted to include a single “large swimbladdered fish” spec- 
rum as the model’s first candidate scatterer type. A Methot
rawl (Methot, 1986 ) targeting a zooplankton aggregation on 

he shelf on the previous transect found it was composed of
uphausiids with mean length 24 mm, so the second candi-
ate scatterer included in the model was a krill spectrum based
n the same DWBA model as in the first simulation, with its
ody length scaled to 24 mm. Since these data also covered
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esopelagic depths off the shelf, we included a “myctophid-
ike” scattering spectrum based on the published frequency re-
ponse of confirmed myctophid aggregations in this area (De
obertis et al., 2010 ). 
Finally, preliminary inspection of the data indicated that

ortions of the water column were occupied by spatially dif-
use scatterers with a frequency response stronger at 18 kHz
han the higher frequencies–a type of scattering that is often
bserved in the Gulf of Alaska and Bering sea (De Robertis
t al., 2010 ; Woillez et al., 2012 ). These scatterers remain
oorly characterized and are rarely analysed explicitly. Such a
requency response could be generated by a resonant scatterer
ith its resonant frequency near 18 kHz, so we included a
ubble-like scatterer, using the same model as above, with
ts radius (and therefore its resonant frequency) as a free
arameter. The depth of the bubble was set to the depth of
he acoustic cell. 

We set the priors for the densities of these four scatterers
o log-normal distributions with mean abundance in the log
omain of −3, −2, −2, and −2 individuals m 

−3 , respectively,
nd SD s of 3 (i.e. 3 orders of magnitude in the linear domain).
he bubble radius was given a uniform prior between 0.01
nd 2 mm. 

roadband inversion: Barnabas Trough 

hough the echosounders were operated in NB mode for
ost of the 2021 survey, we collected a small-scale dataset

n wideband mode in Barnabas Trough, Alaska ( Figure 4 ), on
he south shore of Kodiak Island. Barnabas Trough begins in
gak Bay, and its main channel ( ∼25 km long, 8 km wide at

ts mouth, and 100 m deep) extends southwards to the shelf
reak. We ran four transects in a zig-zag pattern, starting in
pper Ugak Bay at 22:30 local time on June 19, 2021, and
nished in Barnabas trough at 2:00 on June 20. Earlier that
ay, as we surveyed northwards, we conducted two research
rawls in upper Barnabas trough at 57.279 

◦N, 152.523 

◦W
nd 57.442 

◦N, 152.643 

◦W, targeting dense schools in the
iddle of the water column at ∼50 m depth. Both caught mix-

ures of pollock and Pacific herring ( Clupea pallasii ): the first
8% pollock and 32% herring, and the second 89% pollock
nd 11% herring. 

Based on these results, we defined the inverse model with
wo fixed scattering spectra, for a generic swimbladdered fish
nd a 24 mm euphausiid, as well as a variable-radius spherical
ubble. Myctophids were not included in this model because
hey are not found in abundance on the shelf at these shallow
epths. The priors for the densities of these scatterers were set
s in the shelf break case above. 

Fitting models to real BB data required several changes
rom the NB procedures. For one, because the width of each
ransducer’s beam narrows as frequency increases, volume
ackscatter from single off-axis targets appears to decline with
ncreasing frequency (Medwin and Clay, 1998 ). This can in-
roduce artefacts to the volume backscatter spectrum, namely
 distinctive “sawtooth” pattern when all frequency channels
re plotted together. In turn, the model may attempt to fit
hese spurious peaks using the resonant bubble-like scatterer.
o help avoid this, we narrowed the prior for bubble ESR to
 uniform distribution between 0.05 and 0.5 mm, which is
loser to the probable range of swimbladder sizes for larval
sh. To help improve the chances of convergence, we also es-
imated the maximum a posteriori values of the parameters
nd used the optimised values as the starting point for the
arkov Chain. Optimization used the standard BFGS algo-
ithm (Nocedal and Wright, 2006 ), implemented in Julia’s Op-
im.jl package (Mogensen and Riseth, 2018) . 

esults 

imulated case study: fish and krill 

ll models were able to extract useful information from the
ata, with their posteriors differing significantly from the pri-
rs and encompassing the true parameter values within their
5% credible intervals (i.e. between the 2.5% and 97.5%
uantiles of the posterior, Figure 5 ). All models met the conver-
ence criterion (0.99 < 

ˆ R < 1.01 for all parameters). The NB
odel struggled somewhat in the krill-dominated scenario,

dentifying a posterior mode for ESR that was smaller than the
rue value ( Figure 5 ). Because this quantity determined the TS
or fish used to partition the backscatter, the posteriors for the
umerical densities were inaccurate as well. In contrast, the
B models for all three scenarios converged to narrow poste-
iors centered on the true ESR of 0.7 mm, allowing them to
roduce more accurate and precise estimates for fish TS and
herefore fish density. The NB posteriors in all three scenarios
ere broader, reflecting the model’s difficulty in determining

he true resonant peak and densities from five individual fre-
uencies . 
The relative accuracy of the posteriors for fish and krill dif-

ered depending on the dominant source of backscatter. When
sh contributed most of the backscatter, their density esti-
ate was more accurate; the converse was true when krill
ere dominant. The model tended to overestimate the numer-

cal density of the non-dominant scatterer, particularly for the
B models. In the fish-dominated scenario, the mean of the
osterior for krill in the NB model was 1.6 times the true
alue (16 vs. 10 krill m 

−3 ). In the krill-dominated scenario,
he mean of the posterior for fish was 42 times the true value
0.04 vs. 0.001 fish m 

−3 ). These overestimates were largely
riven by the long tails on the respective posterior distribu-
ions ( Figure 5 ), probably caused by the model attempting
o account for random noise in the backscatter spectrum by
ncreasing the density of the non-dominant scatterer. When
B information was available, these posteriors were much
etter constrained. The long tails were eliminated, and the
osterior means were more representative of the posterior
istributions–as well as being closer to the true simulated an-
mal densities. 

imulated case study: mesopelagic mixture 

n the simulated mixture of mesopelagic animals, the inverse
odel was again able to recover good estimates of the mod-

lled densities, though with varying precision depending on
he auxiliary information available ( Figure 6 ). All Markov
hains reliably converged to unimodal posteriors. As seen in
he first case study, the posterior for every BB model was nar-
ower than that for the corresponding NB model. 

In the first scenario, with only acoustic data available, the
odels were still able to effectively update their priors to im-
rove their estimates of the densities of nearly all the scat-
erers. The only exception was squid; these posteriors sug-
ested densities well above the true value of zero ( Figure 6 ).
n the second scenario, with the addition of a hypotheti-
al camera survey providing precise priors for sergestids and
iphonophores, the posteriors for these two scatterers were
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Figure 4. Echograms from upper Barnabas Trough, Gulf of Alaska, showing mean volume bac kscat tering strength ( S v , in dB re m 

−1 ) from BB, pulse 
compressed signals using the 38, 70, 120, and 200 kHz channels. 
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restricted to a narrow range around their true values. How- 
ever, this information also improved the estimates for hake 
and myctophids, especially for the NB models. By fixing the 
proportion of backscatter from siphonophores, a degree of 
freedom was eliminated for the similarly-scattering hake and 

myctophids, constraining the upper limit of their posteriors.
In the third scenario, eDNA sampling eliminated squid and 

confirmed the presence of all other scatterers. Here, a simi- 
lar but less dramatic effect was seen on the hake posteriors: 
both the NB and BB posteriors became slightly more focused 

around the true value than in the initial acoustics-only case.
The elimination of squid from the prior of course also elim- 
inated them from the posterior. In the final scenario, where 
both video and eDNA information were available, the model 
made reasonably accurate estimates of all scatterer densities.
The posteriors means for hake, myctophids, sergestids, and 

siphonophores differed from the true values by 21%, 59%,
0.7%, and 0.3% in the NB models, and by 4%, 1%, 6%, and 

6% in the BB models. 

Field study: Aleutian shelf break 

Backscatter at the Aleutian shelf break showed several struc- 
tures, with different frequencies dominating at different lo- 
cations in the water column (labelled I—V in Figure 3 ). A 
mall region of high backscatter at all frequencies (Layer I)
as present near the seabed just inshore of the shelf break.
ayer II spanned the length of the transect between the surface
nd 75 m depth, and was strongest at 200 kHz. Another layer
III), visible at all frequencies but most intense at 18 kHz, was
entred near 100 m depth offshore of the shelf break. Around
he 10 km mark, this layer appeared to merge with Layer II
bove it. A smaller, more irregular region of scattering (Layer
V) was located around 200 m depth just off the continen-
al slope, with a relatively flat frequency response. Finally, a
egion of diffuse backscatter (Layer V) intersected the conti- 
ental slope at about 300 m depth extending offshore for ap-
roximately 7 km and rising to 200 m depth. This layer was
ost intense at 38 kHz with much weaker scattering at 120

nd 200 kHz. 
Probabilistically inverting the 11 078 cells took 61 minutes 

hen run in parallel on 16 processes on a high-performance 
onsumer laptop, and produced realistic posterior densities 
or all four scatterers over most of the survey line. The main
xceptions were at deeper depths for krill, where the lack of
ata at 120 and 200 kHz (where small, fluid-like scatterers
uch as krill echo most strongly) allowed the model to return
osteriors for krill that were low but highly uncertian, and for
ubbles in areas of low 18 kHz backscatter, where the model
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Figure 5. The inverse model was able to recover the true values for fish swimbladder size (equivalent spherical radius, ESR), as well as fish and krill 
densities, in three simulated scenarios. These scenarios simulated mixtures of larval fish and krill with bac kscat ter dominated by krill (left column), 
dominated by fish (right column), and with similar contributions from both (centre column). The top row shows probability distributions for the ESR, with 
the prior in grey and kernel density estimates of the MCMC posteriors for NB (blue) and BB (orange) models. The vertical dotted line indicates the true 
radius. The bottom row shows bivariate scatterplots of the MCMC posteriors for fish and krill numerical densities from the NB (blue) and BB(orange) 
models, o v erlaid on their prior distribution (gre y contours). Note that the prior is identical f or all three scenarios, but the ax es limits are different f or each 
plot. Dotted lines indicate the true densities. 

Figure 6. The accuracy and precision of Bayesian inverse solutions improved with the addition of auxiliary data and with the expansion of acoustic data 
from NB to BB. Each subplot shows the prior (grey) and posterior distributions (orange for NB, blue for BB) of scatterer density in each of four simulated 
scenarios. In the first scenario, only acoustic data were available. In the second, a video survey revealed the density of sergestid shrimp and 
siphonophores (reflected in their narro w er priors), but none of the faster-swimming animals. In the third, environmental DNA (eDNA) confirmed the 
presence (but not abundance) of all scatterers e x cept f or squid. In the final scenario, both video counts and eDNA w ere a v ailable. Ev en though neither 
in-situ sampling method could quantify hake or myctophids, the constraints they imposed allowed the model to improve its estimates of their density 
relative to the true values (horizontal dashed lines). 
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struggled to fit a resonance peak ( Figure 7 ). As in the first case 
study of simulated fish and krill, some of the posteriors were 
multi-modal, as the model did not converge to a single value 
for the bubble-like scatterer’s ESR, so the posteriors for bubble 
density were also often multi-modal, requiring caution when 

summarising them (Figure S14). 
The model attributed Layer I, the small region of high 

backscatter at the shelf break, mostly to large swimbladdered 

fishes ( Figure 7 a), consistent with the trawl catches, although 

it did not rule out the presence of myctophids or other bubble- 
like scatterers ( Figure 7 b, d). Off the shelf, the near-surface 
scattering Layer II was allocated primarily to krill, consistent 
with the high backscatter at 120 and 200 kHz ( Figure 7 c).
Layer III below it displayed a somewhat more complex struc- 
ture. Its base, at about 100 m depth, was inferred to be of a 
mixture of large fishes and myctophid-like scatterers at den- 
sities on the order of 1 × 10 

−4 m 

−3 and 1 × 10 

−2 m 

−3 , re- 
spectively ( Figure 7 a, b). Slightly shallower and closer to the 
shelf, between 6 and 12 km along track, the layer’s composi- 
tion shifted to bubble-like scatterers with a radius of ∼0.6 mm 

( Figure 7 d and Figure 8 ). These scatterers also overlapped 

with the deepest portion of the krill in Layer I near the 10 km 

mark. Though krill were not the dominant contributors to 

backscatter here, they were by far the most common in numer- 
ical terms, with densities on the order of 0.3 m 

−3 , a hundred 

times more dense than the acoustically dominant bubble-like 
scatterers ( Figure 7 ). 

Layer IV, the smaller area of backscatter just off the mid- 
slope, was attributed to a mixture of large swimbladdered 

fish and myctophid-like scatterers ( Figure 7 a and b). The 
deepest layer (V) was dominated by myctophids, with peak 

densities near 0.02 m 

−3 ( Figure 7 b). However, it also ap- 
peared to contain lower densities of large fishes and small 
bubble-like scatterers, again with ESRs between 0.8 and 1 mm 

( Figure 8 ). 
Alongside the posteriors’ central tendencies, it is instruc- 

tive to look at their relative precisions, presented here as co- 
efficients of variation ( Figure 7 and Figure 8 ). These give 
a rough indication of the model’s confidence in its solu- 
tions. In most locations where the model inferred a high 

density of one of the scatterers, it also inferred a low value 
for the posterior’s C.V., suggesting high confidence in the 
values. 

Field study: broadband in Barnabas Trough 

Backscatter in Barnabas Trough included large, diffuse clouds 
and layers, as well as small, discrete pelagic schools and 

dispersed echoes from individual targets. The schools were 
mostly observed in the upper 50 m, while the more diffuse 
types of scattering extended over most of the water column 

( Figure 4 ). Inverting the 1 315 binned and averaged BB spec- 
tra took ∼1 hour running on 16 parallel processes on a high- 
performance laptop. Consistent with the BB simulations in the 
first case study, most, but not all (69%), Markov chains con- 
verged to unimodal posteriors (Figure S15 C. 

The model attributed the dense schools in the upper water 
column mainly to large swimbladdered fish, although some 
were inferred to contain krill or small bubble-like scattering 
as well ( Figure 9 ). The diffuse scattering filling the main axis 
of the Trough was attributed to a mixture of krill and small 
bubble-like scatterers. On the first transect across the Trough,
these two types of scatterers were relatively evenly mixed, with 
ensities of both between 5 and 10 m 

−3 , though krill were
omewhat more abundant near the top of the diffuse layer.
n the second transect across the trough, krill were more con-

entrated in the upper water column, likely following upward 

ertical migration after sunset at 23:15, with higher densities 
anging from 10 to 20 m 

−3 . On this second transect, bubble-
ike scatterers were spread across the water column, though 

heir densities were highest around 20 m depth, overlapping 
ith the highest concentration of krill, and in the deepest por-

ion of the trough around 90 m. In the regions of highest den-
ity for each scatterer class, their posterior C.V.s were mostly
 30%, indicating fairly confident model fits ( Figure 9 ). In ar-

as of lower inferred density for each scatterer the model was
ess confident, consistent with findings in the fish-krill simula- 
ion above. 

The inferred size of small bubble-like scatterers tended to 

ncrease with depth in the water column, with mean ESRs of
bout 0.1 mm in the surface layer growing to ∼0.35 mm in
he deepest parts of the trough. The models were usually able
o converge on a single, well-constrained posterior distribu- 
ion for bubble ESR ( Figures 10 B and S15), but where they
ould not, this uncertainty propagated through to their in- 
erred numerical density: variability in a bubble’s size trans- 
ates into even greater variability in its resonant frequency and
ackscattering cross-section, so it is not surprising that a low-
recision fit for this parameter would translate into a similarly
ow-precision estimate for its numerical density. 

iscussion 

hese results demonstrate some of the advantages of the prob-
bilistic inverse approach when compared to simpler meth- 
ds of classification and integration. It can deconvolve mix- 
ures of different scatterers and, with appropriate data, it may
lso be able to infer some physical properties of the scatterers
hemselves, such as their size. Perhaps more significantly, the 
robabilistic structure of the model allows it to incorporate 
iverse types of auxiliary information, providing a variety of 
ractical ways to constrain the often-underdetermined inverse 
roblem. Finally, the output of the model is itself probabilis-
ic, providing an intrinsic uncertainty estimate, and a variety
f diagnostics to assess its goodness-of-fit and reliability. 
However, the method is not a panacea, and can fail in a vari-

ty of ways. Most fundamentally, the inverse problem could be
ll-posed, due to too many candidate scatterers for the num-
er of frequencies, collinear TS spectra, overly vague priors,
r insufficient independent constraints. Alternatively, too few 

andidate scatterers, or the wrong set of candidates, might be
ncluded in the model. This could cause biassed or incorrect
esults as the model attempts to account for the observed scat-
ering with the TS spectra it has available, even if they are not
ppropriate. Even if the model is well-formulated, the pos- 
eriors may be multimodal or degenerate, causing numerical 
hallenges and poor convergence for the optimizer or MCMC
lgorithm (Betancourt and Girolami, 2013 ). And as always,
oisy or otherwise poor-quality data are the enemies of acous-
ic inference. If the signal-to-noise ratio is too low, little can be
one to mitigate it, and ideally the method would indicate this
ith large uncertainties on estimates, as it did here for krill

nd bubbles in deep water off the Aleutian shelf ( Figure 7 c
nd d). Ultimately, APES is simply a variant of Bayesian re-
ression, and is subject to all the challenges and constraints
nherent to any statistical model. However, because it is based
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Figure 7. Estimated numerical densities and associated uncertainties for (a) large swimbladdered fish, (b) myctophids, (c) krill, and (d) small bubble-like 
scatterers along the Gulf of Alaska shelf transect. Left panels show the mean value of the posterior for numerical density on a logarithmic scale (note 
that scales differ between these plots). The right panels show the associated posterior coefficient of variation (C.V., i.e. the ratio of the SD to the mean). 

Figure 8. Inferred equivalent spherical radius for small bubble-like scatterers along the Gulf of Alaska shelf break transect. Left panel shows the mean of 
the posterior for bubble size. Right panel shows the posterior’s coefficient of variation (C.V, the ratio of its SD to its mean). For clarity, areas where the 
estimated density of bubbles was lower than 1 5 10 −5 m 

−3 are not displayed (white pixels). 
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n the physical principles of acoustic scattering and linearity
Foote, 1983 ) that underlie all of fisheries acoustics, an insuf-
ciently precise or otherwise suspect answer simply indicates
hat better data or model formulations are needed. 

More than anything else, two decisions will determine the
odel’s success or failure in a particular application. The first

s how to define the backscattering cross-section matrix �.
his could mean choosing an appropriate set of candidate
catterers to include in the model, or selecting appropriate
hysics-based scattering models to fit. Whether using a fixed
et of predefined spectra or calculating them using acoustic
heory, APES will be subject to the same tradeoffs as any sta-
istical model. Including more candidate scatterers will reduce
he chance of a biassed result due to omitting a species that
as truly present, at the cost of making the posteriors for all

pecies more diffuse, and their credible intervals wider. Simi-
arly, building in parameterized scattering functions gives the
odel more flexibility to achieve an accurate fit, at the cost of

ome precision, and perhaps computation time. 
Several strategies can be used to help set up an appropri-

te scattering matrix. The first, and most obvious, is to limit
he candidates to species that could plausibly be present at



A Bayesian inverse approach to identify and quantify organisms from fisheries acoustic data 13 

Figure 9. Estimated numerical densities and associated uncertainties for (a) large swimbladdered fish, (b) krill, and (c) small bubble-like scatterers along 
two transects across upper Barnabas Trough, Gulf of Alaska. Left panels show the logarithm of the posterior mean for numerical density, while the right 
panels show the associated posterior coefficient of variation (C.V., i.e. the ratio of the SD to the mean). Note that colour scales differ for each plot. 

Figure 10. Estimated equivalent spherical radius (ESR) for the bubble-like scatterers along two transects in upper Barnabas Trough, Gulf of Alaska. (a) 
Posterior mean value of ESR. (b) Coefficient of variation (C.V., the ratio of the SD to the mean) for the posterior distribution of ESR. 
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significant densities, and to avoid including species with simi- 
lar scattering spectra (unless you have an independent way to 

constrain them). Given a scattering matrix, its condition num- 
ber can be calculated as a measure of collinearity among the 
individual scattering spectra (Chu et al., 2016 ); if the condi- 
tion number is too high, this could suggest a need to remove 
or group some of the candidates. Parametric scattering func- 
tions may reduce the total number of unknowns, e.g. instead 

of fitting five fixed spectra for different size classes of the same 
species, a single scattering function parameterized by length 

may be more parsimonious. When little prior information is 
available, unsupervised factorization or clustering algorithms 
can be used to identify possible constituent spectra (Woillez et 
al., 2012 ). Though there is no guarantee that they will be bio- 
logically meaningful, if their shapes are recognizable as those 
of realistic scatterers (e.g. resonant, fluid-like, etc.) it may be 
helpful (Cotter et al., 2021b ). 

The second major choice is how to set the priors for the 
scatterers’ densities. This choice is especially critical when the 
cattering matrix is ill-conditioned. In the absence of other in-
ormation, one can simply identify the maximum biologically 
ealistic density n max for each candidate scatterer, and choose 
 prior with negligible probability mass above that value. This
s conceptually equivalent to the procedure of setting a max-
mum threshold s v, max for volume backscatter from a given 

lass of scatterers (e.g. Ballón et al., 2011 ; Uumati, 2013 ),
here s v, max = n max σ . Knowledge of different species habi-

ats, depth distributions, and geographical ranges could also 

e used to set priors, based on how abundant a species is likely
o be at the time and place of the observed data. While these
hoices may appear somewhat vague, it is worth emphasising 
hat most practitioners already make similar decisions implic- 
tly, for instance by assuming that backscatter at a particular
requency is “dominated’ by species A, or that backscatter val-
es above a particular threshold could not have been gener-
ted by species B. Ideally, the priors can be set based on in-
ormation from direct sampling, either as absolute densities,
stimates of species composition, or presence/absences. An ad- 
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antage of the Bayesian approach compared to current prac-
ice is that the model will reveal if the acoustic data are incon-
istent with the priors. Even when direct samples are available,
hey will be at a different spatial resolution than the acoustic
ata, so some type of interpolation or extrapolation will be
equired. This is an important topic for future research. 

Ultimately, if this method is to be used, it will need to be
ompared with, and incorporated into, existing workflows
or acoustic surveys. On one level, this should be relatively
traightforward–it is, after all, just a more complete imple-
entation of the same theory and models already in use. On

nother level, however, it requires a shift in perspective. Most
urrent practice relies on classifying backscatter as consistent
ith a species of interest via examination of echograms or

pplying frequency response thresholds, and then integrat-
ng backscatter at a single frequency to estimate that species’
bundance (Korneliussen et al., 2018 ). The idea of “classifi-
ation,” and the binary decision implicit in the framework, is
hus deeply ingrained, so it is worth emphasising that APES
s not a classification method–it is a probabilistic inversion.
t does not assign backscatter to one category or another, but
ather yields a multivariate probability distribution of animal
ensities. If desired, this can be summarised to give a “most
robable constituent” or “dominant scatterer,” but this is not
equired. Doing so gives up some of the method’s advantages–
amely, its ability to deconvolve mixed aggregations of differ-
nt animals. We suspect that such mixtures may be more com-
on than widely appreciated, given that a classification-based
erspective will tend to overlook them. 
The preceding discussion of the challenges and key deci-

ions involved in the application of the probabilistic inverse
ethod points the way to several immediate avenues for fu-

ure research. One broad area is improving the reliability and
fficiency of model-fitting procedures. This could include pro-
rammed checks for Markov chain convergence, for posteri-
rs that fit the data poorly, or that are similar to the prior,
ndicating that little information was available from the data.

ethods for automated model comparison and relevance de-
ermination (Marwala, 2018 ) could choose the most-likely
ubset of scatterers from a longer list of candidates, reduc-
ng the need for subjective analyst supervision. Where appro-
riate, quadratic approximations and VI (Blei et al., 2017 ),
ould speed up inference. Even the most efficient algorithm,
owever, will require at least two orders of magnitude more
omputation than simple frequency differencing, which may
ose challenges when fitting large survey-scale datasets. In
hese cases, the “embarrassingly parallel” structure of the cell-
ise inverse problem can be exploited to run it on distributed

omputing systems, allowing the method to scale efficiently
ith data volume. In an astronomical application, Regier et al.

 2018 , 2019 ) used conceptually similar Bayesian models to in-
er the identity and parameters of 188 million stars and galax-
es in 178 TB of telescope images. Running in parallel on a
luster with 665 000 processors, this task completed in less
han 15 minutes. While few fisheries scientists have access to
uch supercomputers, their datasets are also orders of magni-
ude smaller, and commercial cloud-computing services mean
calable parallel data processing is both feasible and econom-
cal. 

Another important question for future work is how to in-
orporate spatial information, including autocorrelation, into
he models. At its most basic, this could mean choosing an
ppropriate size for the cells into which volume backscatter
s averaged. This involves a tradeoff between spectral signal-
o-noise ratio and speed of model fitting, which improve as
he cells get coarser, and spatial resolution, which gets worse.

ore sophisticated partitions of the echogram are also pos-
ible. For instance, distinct schools, aggregations, or layers
ould be detected and segmented as a pre-processing step, with
ackscatter spectra from similar pixels averaged together be-
ore being passed to APES (Fernandes, 2009 ; Korneliussen et
l., 2016 ; Loranger et al., 2022 ). On a regular grid, spatial
ependence could be accounted for by smoothing the results
rom nearby cells with a moving average. Alternatively, an ex-
licit spatial model could be used. One simple way to imple-
ent this would be to use the posterior for each depth layer

n one profile of the water column as the prior for the cor-
esponding layer in the next profile–essentially treating the
chogram as a time series in a multivariate state-space model.

any elaborations on these themes are possible, and we be-
ieve they have good potential to improve the reliability of the
asic inverse model. 
Broadband echosounders are relatively new and have not

een incorporated into most routine abundance surveys. Our
xamples indicate that the increased information in BB signals
as the potential to greatly improve abundance estimates, and
hat probabilistic inverse models offer a flexible framework
o incorporate this information in large-scale surveys. How-
ver, more work is needed to optimise spectral processing for
robabilistic inversions. Volume scattering spectra are inher-
ntly noisy (Bassett et al., 2018) due to the complexities of an-
mal anatomy, as well as their variable size, orientation, and
patial arrangement within aggregations. Thus, even single-
pecies aggregations require some smoothing, and the optimal
evel of smoothing for different applications remains to be de-
ermined. Further challenges are introduced when scattering
n a given volume is dominated by a small number of targets.
ingle echoes from an individual animal can have spectra that
re considerably more complex than the relatively smooth
verage TS curves used in the model (Reeder et al., 2004 ).
ecause a transducer’s effective beamwidth changes during
n FM sweep, backscatter from a single off-axis target will
lso appear to decrease with increasing frequency within each
hannel, creating a distinctive sawtooth-shaped spectrum. The
choes from a small number of targets within the same vol-
me will interfere constructively and destructively, introduc-
ng spectral peaks and nulls whose spacing is related to the
n situ spacing of the targets (Demer et al., 2017 ). Non-linear
rosstalk may also become more apparent in these situations
Khodabandeloo et al., 2021 ). 

While there are many aspects open for further research
nd development, we believe that the probabilistic inverse ap-
roach holds great potential for applied fisheries acoustics.
he approach offers a consistent framework to incorporate
ll available information (e.g. BB observations, diverse types
f in-situ data, and prior knowledge) into acoustic abundance
stimates. The models are based on standard physical acous-
ic theory and basic principles of probability, making them
ore easily interpretable, and potentially more generalizable,

han some ML/AI approaches. At the same time, the fact
hat APES is probabilistic makes it more robust than past in-
erse approaches used in fisheries acoustics. In effect, the error
ars provided by the posterior distribution act like shock ab-
orbers, making it safe to run automatically on large volumes
f data. If there is insufficient information to solve the inverse
roblem precisely, the model will not report a precise poste-
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rior. Conversely, when high-quality data are available, a nar- 
row posterior distribution can provide more confidence–more 
than is often available in fisheries acoustics–that the inferred 

scatterers truly are what they appear to be. As echosounders 
are deployed more widely on varied platforms, the spectrum 

of frequencies available expands, and more varied forms of 
ground-truth become available, probabilistic approaches such 

as the one presented here will provide a way for fisheries 
acoustics to make improved measurements of the changing 
ocean environment. 
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